
                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 1 of 24 25/06/2018 
 

 
INFORMATION TECHNOLOGIES FOR SHIFT TO RAIL 

 
 
 
 
 

D1.4 – Semantic Query and Aggregation Engine 
 

Due date of deliverable: 28/02/2017 
 

Actual submission date: 25/06/2018 
 
 
 

 
Leader/Responsible of this Deliverable: Riccardo Santoro - TRENITALIA 
 
Reviewed: Y 
 

Document status 

Revision Date Description 

0.1 27/03/2017 First draft of the deliverable  

1 22/07/2017 Added SPARQL examples with remote graphs 

2 15/06/2018 Final draft of the deliverable 

3 25/06/2018 Final version after TMC approval and Quality check 

 
 

Project funded from the European Union’s Horizon 2020 research and innovation 
program 

Dissemination Level 

PU Public X 

CO Confidential, restricted under conditions set out in Model Grant Agreement  

CI Classified, information as referred to in Commission Decision 2001/844/EC  
 
 

Start date of project: 01/05/2015 Duration: 36 months 
 
 
 
 
 

 

 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 2 of 24 25/06/2018 
 

1. INTRODUCTION 

Advanced ICT solutions that can provide a truly customer-centric, one-stop-shop experience for 
multimodal travel across the Single European Transport Area must have the ability to coordinate the 
execution of complex computational tasks that are inherently distributed on multiple heterogeneous 
systems, or “nodes”, of an open network with no central control.  In this light, systems are 
interoperable if they are capable of participating in such distributed computing tasks. 
 
The Interoperability Framework is designed to insulate applications from the complexities of handling 
distributed computing.  Based on the principles of Linked Data and the Semantic Web1, the Semantic 
Query and Aggregation engine is the component of the Interoperability Framework that gives 
applications access to distributed resources by providing them with an abstraction, the “web of 
transport”, of data that spans the world wide web. Through the semantic query and aggregation 
engine applications can retrieve the data resources they need to perform sophisticated 
computational tasks no matter where they may be located or how they may be structured. 
 
This eliminates a powerful obstacle to interoperability that exists in conventional approaches, such 
as the need to pre-determine shared database schemas and transfer large data sets from pre-
determined sources before customer-relevant solutions can be produced.  It also enables 
applications to leverage new sources and information to generate insights, discover opportunities 
and become actors in the data economy. 
 
Three fundamental technologies contribute to the ability to query the “web of transport”: 
 
1. An ontology, written in the Ontology Web Language (OWL)2 provides an explicit logical 

formalisation of the data in terms of their meaning. This enable machines to “understand” the 
data whatever their format, and to create new derived data elements by means of machine logical 
inferencing. 
 

2. The Resource Description Framework (RDF) provides a representation of data that “specifically 
supports the evolution of schemas over time without requiring all the data consumers to be 
changed”3. In provides, in addition, the ability to link data items across the world wide web. 

 
3. The SPARQL query language for RDF4 provides the ability to perform queries to retrieve, insert 

and delete RDF linked data across the world wide web. 
 
 
This document describes the usage of the three W3C standard technologies above in the 
implementation of the Interoperability Framework’s Semantic Query and Aggregation Engine. 
 
 
  

                                                
1 Cfr. https://www.w3.org/standards/semanticweb/ 
2 Cfr. https://www.w3.org/OWL/ 
3 Cfr. https://www.w3.org/RDF/ 
4 Cfr. https://www.w3.org/TR/rdf-sparql-query/ 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 3 of 24 25/06/2018 
 

 
 

TABLE OF CONTENTS 

1. Introduction ............................................................................................................................... 2 

2. Ontology .................................................................................................................................... 5 

2.1 Rationale .............................................................................................................................. 5 

2.2 Usage in IT2Rail .................................................................................................................. 5 

2.3 Example Domain axioms .................................................................................................... 6 

2.4 Inferred taxonomy ............................................................................................................... 7 

2.5 Inferred classification of instances .................................................................................... 7 

2.6 Inferring equivalent instances (representations) of a common Concept ...................... 11 

2.7 Checking for inconsistencies ........................................................................................... 12 

3. RDF and Linking to external data sources ............................................................................ 13 

4. Semantic Query and Aggregation .......................................................................................... 15 

5. Semantic Query and Aggregation Engine ............................................................................. 19 

5.1 RDF Framework ................................................................................................................. 19 
5.1.1 Empire Configuration ................................................................................................. 20 
5.1.2 Default Empire Configuration ..................................................................................... 21 
5.1.3 Entity Manager .......................................................................................................... 21 
5.1.4 RDF Generator .......................................................................................................... 23 

5.2 Semantic Graph Manager ................................................................................................. 23 
 

 

  



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 4 of 24 25/06/2018 
 

LIST OF FIGURES 

Figure 1 - Inferred Taxonomy example (classes) ............................................................................ 7 

Figure 2 - Inferred instances example ............................................................................................. 7 

Figure 3 - Automatic Inference operations ...................................................................................... 8 

Figure 4 Inferred Route Links .......................................................................................................... 8 

Figure 5 - Inferred Vehicles (Flights) ............................................................................................... 9 

Figure 6 Inferred Vehicles (Trains) .................................................................................................. 9 

Figure 7 Inferred Stop Places (Airports) ........................................................................................ 10 

Figure 8 Inferred Stop Places (Rail Stations) ................................................................................ 10 

Figure 9 Inferred Equivalent Instance of Airport (Linate) ............................................................... 11 

Figure 10 Inferred Instance of Airport (Fiumicino) ......................................................................... 11 

Figure 11 – Inferred equivalentce of LIN and Linate_Airport ......................................................... 11 

Figure 12 – Inferred equivalence of FCO and Leonardo_da_Vinci-Fiumicino_Airport ................... 12 

Figure 13 - RDF representation of Linate Airport in local It2Rail graph .......................................... 14 

Figure 14 - SPARQL Query Example 1 ......................................................................................... 15 

Figure 15 – SPARQL Sample Query Results 1 ............................................................................. 16 

Figure 16 -  SPARQL Query Example 2 ........................................................................................ 16 

Figure 17 - SPARQL Query Result 2 ............................................................................................. 17 

Figure 18 - SPARQL Query for Airport in area code for Milan ....................................................... 17 

Figure 19 – SPARQL Query Result for Airport in area code Milan ................................................ 18 

Figure 20 - RDF Framework configuration model .......................................................................... 20 

Figure 21 - RDF Framework Entity Manager ................................................................................. 22 

Figure 22 - RDF Serialisation ........................................................................................................ 23 

Figure 23 - Semantic Graph Manager model ................................................................................ 24 

  



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 5 of 24 25/06/2018 
 

2. ONTOLOGY 

2.1 RATIONALE 

Formats are a syntax used to provide a representation of certain facts, event and their relationships 
for machines to process. The processing of this data depends, however, on a correct interpretation 
of what facts, events or relationships are involved in the application of some technical or business 
logic. Since the same fact can be represented in different syntaxes the problem of interoperability 
may be considered as one of providing machines with some means to perform this interpretation, 
i.e. to recognise that different data items are, in fact, different representations of the same fact, i.e. 
with a shared machine-readable description of what fact the datum represents and how it relates 
formally to other facts of the domain. 

 

2.2 USAGE IN IT2RAIL 

An ontology provides an axiomatic model of some domain of interest expressed in a formal system 
that is amenable to automatic machine classification and inference processing. The axioms describe 
domain knowledge that is independent on actual data, i.e. something that holds true for every 
instance of any data, e.g. a RouteLink cannot connect one StopPlace with itself, an Airport cannot 
be the start or end StopPlace of a RailLink, or if two items of data represent the start or end StopPlace 
of the same RouteLink than they are different names for the same StopPlace. 
When applied to actual data the reasoner can automatically determine logical consequences or 
proofs such as the following: 
 

1. What they ‘mean’, e.g. whether they are instances of Airports or Vehicles. 

2. What relationships exist between them, e.g. this datum represents a specific Flight that 

connect two specific Airports. 

3. Whether they are different representations (e.g. ‘codes’, ‘formats’) of the same thing, and if 

they are, which is the common concept or property they represent. 

4. Whether the data conform to the model, i.e. whether they are compliant with the axiomatic 

description of the domain’s logic, providing furthermore for an ‘explanation’ of the constraints 

that may be violated. 

Written in the “Ontology Web Language – Description Logic” (OWL-DL) and Semantic Web Rule 

Language (SWRL) language the axiomatic domain knowledge can additionally be serialised using 

standard mechanisms such as XML or JSON, and therefore shared across distributed machines and 

processed by them.  One particular case of such a processing is the automation of mappings 

between schemas or ‘data formats’. For example, where an OWL classes describe different but 

equivalent XSD ComplexTypes, or OWL ObjectProperties or DataProperties describe different but 

equivalent XSD Elements or Attributes, the mapping from one XSD schema to another (or to an 

equivalent JSON schema) can be automated.  

Also, because OWL-DL items (classes, properties and instances or ‘individuals’) are uniquely 

identified by an IRI that can be deferenced, reasoning can produce results uniquely identified by 

such IRIs that are hyperlinks to additional items which can be accessed over the web to obtain 

additional data logically related to them. For example, the identification of an Airport can be a link to 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 6 of 24 25/06/2018 
 

an external data set describing properties of its operating hours, connected metro lines or taxi stands, 

which can be accessed to enrich the data. 

We illustrate the approach with a few rudimentary examples in the following subsections. 

 

2.3 EXAMPLE DOMAIN AXIOMS 

The example is based on the following axioms: 
 

1. A Vehicle is a class of vehicles. 

2. A Vehicle has a isTransportationMode property which can be either AIR or RAIL. 

3. A Flight is a Vehicle whose isTransportationMode property is AIR.   

4. A Train is a Vehicle whose isTransportationMode property is RAIL. 

5. A StopPlace is a class of stop places. 

6. A RouteLink is a class of objects with the following properties. 

a. startsAtPlace at least one StopPlace. 

b. endsAtPlace at least one StopPlace. 

7. the startsAtPlace and endsAtPlace StopPlaces of a single RouteLink must be distinct. 

8. If a RouteLink has startsAtPlace (or endAtPlace) properties with the same value, the values 

represent the same StopPlace instance (i.e. startsAtPlace and endsAtPlace are functional 

properties). 

9. A Vehicle operates some RouteLink. 

10. An AirLink is a RouteLink operated by a Flight. 

11. A RailLink is a RouteLink operated by Train. 

12. An Airport is a StopPlace at which an AirLink either starts or ends. 

13. A RailWayStation is a StopPlace at which a RailLink either starts or ends. 

14. An Airport and a RailWayStation are disjoint classes. 

15. If a StopPlace is the start (or end) place of a RouteLink operated by a Vehicle whose 

isTransportMode property is AIR then the StopPlace has a stopPlaceMode of AIR. 

16. If a StopPlace is the start (or end) place of a RouteLink operated by a Vehicle whose 

isTransportMode property is RAIL then the StopPlace has a stopPlaceMode of RAIL. 

Given those axioms, i.e. a model of the domain, we now feed the system sample data representing 
StopPlaces, Vehicles, and Objects of unknown nature associated with Vehicles and StopPlaces. 
 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 7 of 24 25/06/2018 
 

2.4 INFERRED TAXONOMY 

The reasoner automatically builds an inferred taxonomy of the classes, describing AirLink and 
RailLink as subclasses of RouteLink, and Airport and RailWayStation as subclasses of StopPlaces: 
 

 

Figure 1 - Inferred Taxonomy example (classes) 

 

2.5 INFERRED CLASSIFICATION OF INSTANCES 

The reasoner automatically determines the type of data instances:  
 

 

Figure 2 - Inferred instances example 

  
 
MIL-ROM and NAP-MIL are both AirLinks, which is a subclass of RouteLink.  
 
 
For example, MIL-ROM is determined to be an AirLink through the application of the axioms as 
follows: 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 8 of 24 25/06/2018 
 

 

Figure 3 - Automatic Inference operations 

 
i.e. it starts and ends at LIN and Leonardo_da_Vinci-Fiumicino_Airport (lines 1 and 2), which are 
StopPlaces (lines 4 and 6): it is therefore a RouteLink (line 10). AZ1234 is a Vehicle (line 8) which 
isTransportMode AIR (line 9), which makes it a Flight (line 5), and operates this RouteLink (lines 3 
and 7): the RouteLink MIL-ROM is therefore an AirLink (line 11). 
RailLinks are similarly classified: 
 

 

Figure 4 Inferred Route Links 

  



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 9 of 24 25/06/2018 
 

Vehicles are similarly classified as Trains or Flights:  
 

 

Figure 5 - Inferred Vehicles (Flights) 

 

 

Figure 6 Inferred Vehicles (Trains) 

 
  



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 10 of 24 25/06/2018 
 

Stop Places are classified as Airports or RailWayStations:  
 

 

Figure 7 Inferred Stop Places (Airports) 

 

 

Figure 8 Inferred Stop Places (Rail Stations) 

 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 11 of 24 25/06/2018 
 

2.6 INFERRING EQUIVALENT INSTANCES (REPRESENTATIONS) OF 

A COMMON CONCEPT 

Given the definition of an instance (NAP-MIL) as something that startsAtPlace Naples_Airport and 
endAtPlace LIN (both StopPlace(s)), the reasoner infers that it is an AirLink and that LIN and 
Linate_Airport are the same instance of the StopPlace at which the AirLink ends: 
 

 

Figure 9 Inferred Equivalent Instance of Airport (Linate) 

 
This is a result of LIN and Linate_Airport having been both defined as end Stop Places of the same 
MIL-ROM object, which is an AirLink: 
 

 

Figure 10 Inferred Instance of Airport (Fiumicino) 

 

In fact, FCO and Leonardo_da_Vinci-Fiumicino_Airport are also defined as start StopPlace for the 
same AirLink. Since the startsAtPlace and endsAtPlace relationships are defined as functional in the 
model, the system determines that the instances represent the same Stop Place (in addition to other 
inferred properties, such as its transportationMode, or the Vehicles that arrive or depart at this 
StopPlace.  
Here’s the eqivalence of LIN with Linate_Airport: 
 

 

Figure 11 – Inferred equivalentce of LIN and Linate_Airport 

 
 

  



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 12 of 24 25/06/2018 
 

 
Here is the equivalence of FCO with Leonardo_da_Vinci-Fiumicino_Airport: 
 

 

Figure 12 – Inferred equivalence of FCO and Leonardo_da_Vinci-Fiumicino_Airport 

 
The system is therefore able to determine automatically the equivalence of two different ‘codes’ for 
the same instance when they are in the range of a functional property just once in the entire 
knowledge base.  
 

2.7 CHECKING FOR INCONSISTENCIES 

We define (erroneously) an object that starts and ends at the same StopPlace: 
 

 

  

The system verifies that this is not allowed in the model: 
 

 
 
The constraint is expressed by a SWRL rule specifying that something (?rl) that starts and ends at 
the same StopPlace (?sp) is to be an instance of the (empty) class Nothing. 
As an additional example, we specify that NAP-MIL endsAtPlace LIN and also endsAtPlace 
Milano_Centrale_raiwlay_station. Since endsAtPlace is a functional property, we would expect that 
LIN and Milano_Centrale_railway_station are inferred to be the same instance However this would 
be an error, as LIN is an Airport and Milano_Centrale_railway_station is a RailWayStation. We check 
for the reasoner to report the inconsistency: 
 
 
 
 
 
 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 13 of 24 25/06/2018 
 

This is the wrong assertion:  
 

 
 
The reasoner detects the inconsistency: 
endsAtPlace is functional property, therefore LIN (an Airport) and Milano_Centrale_railway_station 
(a RailWayStation) are initially considered identical instances. However, the axiom: 
 

 
 
is violated and the inconsistency is detected. 
 

3. RDF AND LINKING TO EXTERNAL DATA SOURCES 

The Interoperability Framework leverages the following feature of the Resource Definition 
Framework (RDF) to create, maintain and query the “web of transport” abstraction for IT2Rail project 
applications: 
 

“RDF extends the linking structure of the Web to use URIs to name the relationship between things 
as well as the two ends of the link (this is usually referred to as a “triple”). Using this simple model, 
it allows structured and semi-structured data to be mixed, exposed, and shared across different 
applications. 

This linking structure forms a directed, labeled graph, where the edges represent the named link 
between two resources, represented by the graph nodes. This graph view is the easiest possible 
mental model for RDF and is often used in easy-to-understand visual explanations”5. 

The following figure provides the RDF representation of the Linate Airport in Milan: 
 

                                                
5 https://www.w3.org/RDF/ 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 14 of 24 25/06/2018 
 

 

Figure 13 - RDF representation of Linate Airport in local It2Rail graph 

 
The RDF fragment above describes a portion of the local IT2Rail semantic graph with four nodes: 
 

 The Milano Linate Airport node itself, which references 
o A geographical Location node through property isLocatedAt 
o Two Stop Place Code nodes through two instances of property hasStopPlaceCode 

 
However, it also contains a reference to an external node, i.e. http://dbpedia.org/resource/Linate_Airport through 
the property owl:sameAs. The property owl:sameAs is a logical identity operator understood by the 
reasoner to signify that the two URIs http://it2rail.org/infrastructure/iata/LIN in the local graph and 
http://dbpedia.org/resource/Linate_Airport on the world wide web identify the same node instance. 
RDF data associated with http://dbpedia.org/resource/Linate_Airport provides therefore additional 
details on the resource that is accessible by a machine retrieving the local graph node identified by 
http://it2rail.org/infrastructure/iata/LIN: the two sets of RDF data located at different machines enrich 
each other so that both become part of the “web of transport” data. 

  

http://dbpedia.org/resource/Linate_Airport
http://it2rail.org/infrastructure/iata/LIN
http://dbpedia.org/resource/Linate_Airport
http://dbpedia.org/resource/Linate_Airport
http://it2rail.org/infrastructure/iata/LIN


                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 15 of 24 25/06/2018 
 

4. SEMANTIC QUERY AND AGGREGATION 

 
Summing up the discussion in the preceding chapters 2 and 3, the “web of transport” abstraction 
offered to IT2Rail applications is realised through the following mechanisms: 
 

 The “meaning” of data is captured as formal and explicit axiomatic description of “knowledge” 
about the application domain known as the domain’s “ontology”. The ontology is written in 
the machine-readable standard language OWL. 

 Facts about the world, i.e. “data”, are described as a linked graph in the standard RDF 
representation, i.e. as a set of “triples” in which objects are identified by an URI that 
constitutes a link across the world wide web. 

 The application to RDF data of machine reasoning based on the ontology results in the 
production of additional triples in the graph representing extra data that are logical 
consequences of the known facts. For example, a certain datum may be found to be an 
instance of an Airport, and this becomes an extra data element in the graph associated with 
the original datum 

 
As a result an RDF graph spanning the world wide web is constructed which acts as the shared data 
base for all IT2Rail applications. Semantic Query and Aggregation provides the means to access 
the data base and to package results for use in the applications. 
 
To this end the standard the SPARQL query language for RDF6 is used, which is a fundamental 
element of the semantic web toolset. 
 
The following figure shows a SPARQL query performed on the IT2Rail “web of transport” data. 
 

 

Figure 14 - SPARQL Query Example 1 

                                                
6 https://www.w3.org/TR/rdf-sparql-query/ 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 16 of 24 25/06/2018 
 

The System is instructed to retrieve from an extended graph comprised of rdf data stored in the local 
It2rail repository and the linked open data cloud7 reachable at endpoint 
http://lod.openlinksw.com/sparql all Rail Stations located within a 10 Km radius from the 
geographical coordinates of Santiago de Compostela, ordered by increasing distance. For each Rail 
Station in the result set the station’s URI, its name, it code and the distance from the identified point. 
The city’s geographical coordinates are retrieved from the remote graph and used to identify the Rail 
Stations stored in the local graph. The query generates the following results: 
 

 

Figure 15 – SPARQL Sample Query Results 1 

 

As a second example we describe a query that leverages the owl:sameAs property of the ontology: 
 

 

Figure 16 -  SPARQL Query Example 2 

 
The query retrieves the entity in the local rdf graph whose stop place code value is the string LIN. It 
also looks up the linked open data repository to get additional information on the same entity, namely 
its elevation expressed as a float data type, city and the description in French.  
 
The results are aggregated from properties in the local graph, i.e. the entity’s name, type of facility, 
latitude and longitude, and elevation, city and description from the remote graph.  
 
  

                                                
7 https://lod-cloud.net/ 

http://lod.openlinksw.com/sparql


                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 17 of 24 25/06/2018 
 

 
 
The following figure shows the result: 
 

 

Figure 17 - SPARQL Query Result 2 

 
Because of the owl:sameAs property found in the graph for Linate Airport, as shown in Figure 13 
above, the remote graph is queried for resource http://dbpedia.org/resource/Linate_Airport by which 
http://it2rail.org/infrastructure/iata/LIN is known in the local graph. 
 
It should be noted also that the city result is itself a resource in the remote graph identified by the 
URI http://dbpedia.org/resource/Milan, and can therefore be used to retrieve additional information 
using the same capability. For example, the following query finds the Airport in the local graph that 
serves the city identified by postal code 20121–20162 in the remote graph, returning the description 
of the city with that postal code and the total residing population thus served by the airport: 
 

 

Figure 18 - SPARQL Query for Airport in area code for Milan 

http://dbpedia.org/resource/Linate_Airport
http://it2rail.org/infrastructure/iata/LIN
http://dbpedia.org/resource/Milan


                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 18 of 24 25/06/2018 
 

 
The following result is returned by the query: 

 

 

Figure 19 – SPARQL Query Result for Airport in area code Milan 

 
The important thing to note in these examples is that the sample queries are designed to respond to 
very different use cases but the data is not.  They are in fact semantic queries, based on the data’s 
meaning, not on the data’s structure. That is what makes it possible to use data in a travel and 
transportation application even if it was not originally designed for it, e.g. from the linked open data 
(lod) graph. Also, the examples show that it is not necessary to obtain and transfer copies of these 
data, and that it is not, therefore, necessary to convert them to any specific format either for them to 
be used in a local application. 
 
Since multiple use cases can be supported on the same semantic graph as specific SPARQL 
queries, a generic Semantic Query and Aggregation component capable of performing such queries 
has been developed as part of the Interoperability Framework.  Different queries, all supported by 
the same engine, correspond to the different “packaged resolvers” delivered as services of the 
Interoperability Framework to IT2Rail applications. 
 

  



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 19 of 24 25/06/2018 
 

5. SEMANTIC QUERY AND AGGREGATION ENGINE 

 
As shown in the fragment in Figure 13 describing Linate Airport, semantic graphs described in RDF 
are actually a ‘dialect’ of XML that use a specific namespace and schema for rdf, indicated by the 
rdf: prefix and rdf:<tagname> tags. They could therefore in principle be exchanged and manipulated 
using standard tooling for XML. However, a number of frameworks have been developed to facilitate 
the development of applications in standard environments such as JAVA. Open source such 
frameworks are available8 that additionally include the ability to handle secure communications and 
interactions with remote semantic graph stores (“triple stores”) from multiple vendors provided they 
handle the standard SPARQL protocol. Of particular interest for the IT2Rail project is the fact that 
large graphs accessible through SPARQL exist already over the world wide web, as shown in the 
examples in chapter 4. In order to exploit the availability of these existing graphs the Semantic Query 
and Aggregation Engine design has been based on the following principles: 
 

1. The Engine must be built on open source frameworks and be able to operate on any existing 
or future semantic graph under the sole condition that it be compliant with W3C semantic 
web standards. 

2. The Engine must be independent of any implementation of a local or remote triple store, and 
must be able to interact to multiple such local or remote triples stores simultaneously. 

3. The Engine must provide the ability to perform any SPARQL compliant query. 
4. The Engine must be able to find and execute a SPARQL compliant query identified by name 

from a local or remote repository. 
5. The Engine must be able to import the domain’s ontology from a local or remote ontology 

repository. 
6. The triple stores, ontology repository or SPARQL query repositories used by the Engine must 

be controlled by configuration. 
7. The Engine must handle, if requested, automatic serialisation of Java classes to RDF and 

vice-versa, i.e. generate SPARQL queries from Java classes and return SPARQL results as 
Java classes. 

 
Taken together, these principles must ensure that specific Interoperability Framework “packaged 
resolvers” such as Location Resolver or NeTEX producer, can be built to use the same Engine with 
a specific configuration, i.e. as services that only specialise the specific SPARQL queries and Triple 
Stores the use for their particular specialised task. As a consequence, the following additional 
principle must be applied in its design: 
 

8. The Engine must be packaged as a Java Archive (JAR) file so that it can be included as a 
dependency in the creation of “packaged resolvers”. 

5.1 RDF FRAMEWORK 

The IT2Rail RDF framework provides Java Persistence API Architecture (JPA)-like capabilities 
extending it with the ability to operate on triple stores, i.e. on database systems designed for storage 
and retrieval of RDF statements (“triples”) through semantic queries. 
Similarly, with how in JPA annotations on java classes provide automatic object-relational mappings 
from these classes to relational database schemas and vice-versa, the RDF framework provides 
automatic mappings to/from RDF statements. This enables the developer to delegate the mechanics 
of connection, input/output and storage/retrieval of the data across the network to the framework, 
while concentrating on the manipulation in pure java of objects and relationships which, unlike the 
JPA entities, represent logical statements connected to the domain’s axiomatic description of the 

                                                
8 Cfr. RDF4J http://rdf4j.org/, JENA https://jena.apache.org/  

http://rdf4j.org/
https://jena.apache.org/


                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 20 of 24 25/06/2018 
 

domain’s ontology.  For example, triples generated by a SPARQL query as a result of logical 
inference, i.e. new logical statements inferred based on the axioms and the existing data, are 
automatically instantiated as java objects and relationships and are therefore available for “ordinary” 
programming. 
The IT2Rail RDF framework is itself an extension and a merging of the two open source frameworks 
Empire (https://github.com/mhgrove/Empire) and Pinto (https://github.com/stardog-union/pinto), 
both licensed under the Apache License 2.0. The extensions consist in:  

1. Porting to the Eclipse RDF4J framework (http://rdf4j.org/) 
2. Merging of Empire and Pinto RDF mapping functionality 
3. It2Rail-specific extensions, including multiple additional datatype conversions 

The it2rail RDF framework for the FREL release is built and installed in the IT2Rail project’s MAVEN 
repository for use in higher level development.   
 

5.1.1 Empire Configuration 

 

 

Figure 20 - RDF Framework configuration model 

 
The Empire class is a container that holds the RDF framework’s configuration instantiated at start 
up time. The configuration consists principally of three items: 

1. The EmpireConfiguration containing a list of persistence unit descriptors and the name of a 
file of annotated java classes. 

2. The Namespace and NamedQueries annotations used by the RdfGenerator and 
RdfQueryFactories classes, described below, to perform SPARQL queries and automatic 
mapping to/from RDF. This configuration is generated at initialisation time by an 
implementation of the EmpireAnnotationProvider interface. 

3. The DataSourceFactory to be used by the EntityManager, described below, to create access 
to one or more triple store providers for storing and retrieving triples. This configuration is 
generated at initialisation time by an implementation of the JPA PersistenceProvider 
interface. 

 
Concrete implementations of the EmpireAnnotationProvider and EmpirePersistenceProviders are 
injected at initialisation time through the Guice framework9, i.e. by defining bindings in a Guice 
Module. The figure above displays the providers injected by default through the 
DefaultEmpireModule (not shown in the figure):  EmpirePersistenceProvider implements the JPA 
PersistenceProvider while PropertiesAnnotationProvider implements EmpireAnnotationProvider. 

                                                
9 https://github.com/google/guice/wiki/ExternalDocumentation 

https://github.com/mhgrove/Empire
https://github.com/stardog-union/pinto


                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 21 of 24 25/06/2018 
 

 

5.1.2 Default Empire Configuration 

The following default configuration is created at initialisation time by the call  
 

Empire.init(new OpenRdfModule) 
 

under the control of Guice modules: 
1. Empire Configuration  persistence unit descriptors are read from the configuration file whose 

name is associated with the System Property “empire.configuration.file”. The configuration 
file must be accessible by the classLoader. 

2. Namespace and NamedQueries are read through EmpireAnnotationProvider from the 
annotations of java classes listed in a file whose name is the value of “annotation.index” in 
the configuration file. The file listing classes and named queries must be accessible by the 
classLoader. 

3. The EmpirePersistenceProvider implementation of the JPA PersistenceProvider is injected. 
4. The concrete implementation RepositoryDataSourceFactory of the DataSourceFactory 

interface is injected from the binding specified in the Guice module OpenRdfModule. 
 
The following is a sample empire configuration file with two persistence unit descriptors: 
 

0.name=it2rail 
0.factory= rdf4j 
0.url =http://192.168.150.139:7200 
0.repo=IT2RAIL 
 
1.name=wikidata 
1.factory = rdf4j 
1.sparql_endpoint = https://query.wikidata.org/ 

 

5.1.3 Entity Manager 

Once an Empire configuration is set up the NameSpace and NamedQueries annotations, the 
persistence unit descriptors and a concrete DataSourceFactory are available to create instantiate 
one or more Entity Managers used to perform storage and retrieval of RDF statements and 
conversions of java classes to/from RDF triples. 
The IT2Rail RDF framework’s Entity Manager is an implementation of the JPA EntityManager 
interface, i.e. it provides the same methods to persist, merge, remove and find java entities to/from 
triple stores as those provided for relational data bases. 

https://query.wikidata.org/


                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 22 of 24 25/06/2018 
 

 

Figure 21 - RDF Framework Entity Manager 

 
In the figure above the EntityManager, on the left, handles the usual JPA operations, including 
managing cascading as determined by normal JPA CascadeType values. Objects are 
persisted/retrieved from the concrete DataSource implementation created by the 
RepositoryDataSourceFactory injected at Empire configuration time. In the figure, to the right, the 
DataSource interface implementation created by the RepositoryDataSourceFactory is the class 
RepositoryDataSource, which itself has a reference to a HTTPRepository of the Eclipse RDF4J 
framework to access a remote triple store. All persistence operated commanded by the 
EntityManager are executed as method invocations on the actual interface to the remote triple store. 
Between the Entity Manager and the Repository the RDFGenerator performs the serialisation of java 
objects to/from RDF triples. 
In analogy with the JPA API Architecture, which provides capabilities to generate custom SQL 
queries from java classes, the IT2rail RDF framework includes the RdfQueryFactory utility class to 
generate and validate SPARQL queries against the target triple store concrete Repository interface 
implementation.    
An Entity Manager is instantiated through the call 
 
EntityManager aManager = Persistence.createEntityManagerFactory(persistenceUnit) 
         .createEntityManager(); 
 

Where persistenceUnit is the name of a persistence unit descriptor created at Empire configuration 
time, i.e. “it2rail” or “wikidata” in the example configuration file shown above. 
 
 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 23 of 24 25/06/2018 
 

5.1.4 RDF Generator 

The RDFGenerator provides utility classes and methods to execute serialisation of java classes 
to/from RDF triples using annotations on the class.  
 

 

Figure 22 - RDF Serialisation 

 
The fundamental mechanism of the serialisation is the following: 
1. Serialisation to RDF (“lifting” from the specific data format to the ‘ontology’ language) 

a. The class @RdfsClass annotation determines the rdf:type property of an instance of this 
class. 

b. All getter methods of a class that contain an @RdfProperty annotation are used to read 
property values using reflection.  The value of the @RdfProperty annotation becomes a 
predicate, and the property value obtained from the getter becomes the object of the 
triple. 

2. Serialisation from RDF (“lowering” from the ‘ontology’ language to the specific data format) 
a. The object of the rdf:type predicate in a triple determines the instantiated java class. 
b. For all predicates in the triple the setter methods in the class that have a matching 

@RdfProperty annotation are invoked to set the class’ corresponding value to the object 
of the triple’s predicate. The setter methods can be ‘inferred’ from the annotated getter 
methods if they conform to the usual naming convention for java getters/setters. 

 

5.2 SEMANTIC GRAPH MANAGER 

 
The Semantic Graph Manager is built on top of the It2Rail RDF framework and provides an 
implementation of the Semantic Query and Aggregation Engine for use by Interoperability 
Framework “packaged resolver” services. 
The Semantic Graph Manager for the FREL release is built and installed in the IT2Rail project’s 
MAVEN repository for use in packaged resolver development.   
 



                       

 

 

Contract No. H2020 – 636078     

  

 

 

ITR-T1.4-D-TRI-001-03 Page 24 of 24 25/06/2018 
 

 

Figure 23 - Semantic Graph Manager model 

 
As can be seen in the figure above, the Semantic Graph Manager adds to the underlying it2rail RDF 
framework references to an instantiated EntityManager, to an OntologyProvider interface, to a 
NamedQueriesProvider interface and to an IFQueryBuildFactory interface. 
 
A particular “packaged resolver” Semantic Graph Manager is obtained by supplying a specific Guice 
injection module containing the specific bindings requested  

1. to the desired persistence unit configuration for which an EntityManager must be created.   
2. to the desired DataSourceFactory for the specific packaged resolver. 
3. to the desired NamedQueriesProvider interface implementation for the particular resolver. 
4. to the desired OntologyProvider interface implementation for the particular resolver. 
5. to the desired IFQueryBuilderFactory implementation requested for the particular packaged 

resolver. 
 

The first two bindings are propagated to the underlying it2rail RDF framework to create the Empire 
configuration described in chapter 4.1.2, while the third, fourth and fifth are specific to the Semantic 
Graph Manager: 

1. a NamedQueryProvider interface implementation provides access to a set of stored 
SPARQL queries templates from which individual queries can be instantiated. Since 
semantic queries can represent first order predicate logic ‘rules’, the ability to store them for 
re-use, versioning, etc. as ‘assets’ in the Interoperability Framework Assets Manager is an 
important feature of the design and the implementation. Also since providers can be injected 
through the Guice framework it is possible use different sets/versions of named queries, for 
example for testing and production, and/or to store them in different media, e.g. as files 
packaged with the Semantic Graph Manager’s JAR archive, on distributed web servers or 
the triple store itself. In Figure 21 above the concrete implementation is the 
AssetManagerQueries provider that accesses the Interoperability Framework’s Asset 
Manager for stored queries. 

2. an OntologyProvider interface implementation provides access to the domain’s ontology. In 
Figure 21 above the concrete implementation is the AssetManagerProvider class that 
provides access to the AssetManager for the stored ontology. 

3. An IFQueryBuilderFactory interface implementation, also injected through the Guice 
framework, provides the means to produce an implementation of the Function<T,String> 
functional interface available in Java  1.8. The concrete injected implementation implements 
a specific functional interface to create a SPARQL query from a request of generic type T.  
Used in conjunction with the named queries templates, this feature allows for the 
development of multiple “packaged resolvers” on the same Semantic Graph Manager by 
supplying it with the appropriate Guice Module.  


